Derivative

f(x)=x632x

ddx[x632x]
=ddx[x6]32ddx[x]
=6x5321
=2x52

f(x)=(x32x)(x5+6x2)

ddx[(x32x)(x5+6x2)]aaaa
=ddx[x32x](x5+6x2)+(x32x)ddx[x5+6x2]
=(ddx[x3]2ddx[x])(x5+6x2)+(ddx[x5]+6ddx[x2])(x32x)
=(3x221)(x5+6x2)+(5x4+62x)(x32x)
=(3x22)(x5+6x2)+(x32x)(5x4+12x)
Rewrite/simplify:
=8x712x5+30x436x2


Previous
Next Post »